摘 要:采用钻孔法测试铁型覆砂工艺ZL205A铝合金筒形铸件在不同覆砂厚度下的铸造残余应力,采集各覆砂厚度的凝固冷却曲线,研究覆砂厚度对铸件残余应力及凝固冷却过程的影响;利用Von Mises模型和Mohr-Coulomb模型,进行了覆膜砂铸造有限元仿真.研究结果表明:覆砂工艺能有效减少铸件残余应力.当覆砂厚度达到7 mm时铸件残余应力可以降低约62%;覆砂厚度大于7 mm后,残余应力继续减小幅度减小.通过对覆膜砂铸造过程测得的凝固冷却曲线分析,建立了覆砂厚度与凝固冷却速率、晶粒大小及共晶温度之间的关系,为实际应用提供可靠的工艺参考.仿真结果显示两种模型模拟的计算结果都与实验趋势基本吻合,但同时也需要考虑到不同覆砂厚度下两种模型各自的适用性.
关键词:ZL205A;铁型覆砂;残余应力;有限元模拟
中图分类号:TG146.2 文献标志码:A
Research on Reduction of Casting Residual Stress for Aluminum Alloy Cylinder by Coated Sand Casting
LIU Jinshui,LIU Siyu,GAO Wenli
(College of Materials Science and Engineering,Hunan University,Changsha 410082,China)
Abstract:In order to study the influence of coated sand thickness on casting residual stress and solidification cooling process,the casting residual stress of ZL205A aluminum alloy cylinder with different sand thickness was measured by drilling method,and the solidification curves were collected.The paper has carried out finite element simulation of coated sand casting processes for ZL205A aluminum alloy specimen by adopting Von Mises mold and Mohr-Coulomb mold.The results show that the residual stress of castings can be reduced by about 62%,when the sand thickness reaches 7 mm.The residual stress changes a little with the sustained increasing of sand thickness.To provide a reliable process reference,the relationship between sand thickness and solidification cooling rate,grain size and eutectic temperature was established by analyzing and comparing the temperature curve measured in coated sand casting process.The simulation results show that the calculated results of the two models are basically consistent with the experimental trend.But we also need to take into account the applicability of the two models under different sand thickness.
Key words:ZL205A;coated sand casting;residual stress;finite element simulation
ZL205A鋁合金是目前国内强度最高的铸造铝合金,同时具有较好的塑性和韧性,因此在航空航天领域应用广泛[1].筒形舱体铸件是航空航天飞行器的关键结构件,这类铸件尺寸大、结构复杂,承受冲击载荷和静载荷都较大,力学性能要求高.金属型铸造是生产此类高强度铸件的必要手段之一,但金属型铸造易导致铸件的残余应力过大.对于ZL205A铝合金来说,该合金结晶温度范围宽,线收缩较大,金属型铸造残余应力问题更为严重,已成为我国航空铸件领域面临的重大难题[2].目前许多学者围绕ZL205A铝合金的合金化、熔体净化、细化晶粒等角度进行了研究,但是有关合金成形工艺的研究较少[3].工业生产时还是沿用耗能耗时的热处理工艺来消除残余应力,且难以适用于大型铸件.对此,通过利用铁型覆砂铸造工艺减少铸件残余应力.该工艺能有效控制型芯的退让性,同时也能保证较高的冷却速度.由于铸件的多样性和复杂性,如果通过大量实验或者简单的经验公式来确定合适的覆砂厚度等工艺参数,不切实际也会造成很大浪费及误差.利用数值模拟来分析铸造残余应力是目前发展趋势[4].本文利用国内ZL205A高强铝合金,进行了筒形铸件的浇注实验,分析不同覆砂厚度下铸造残余应力及铸件冷却规律.并分别将砂层模型设置为Von Mises模型和岩土力学的Mohr-Coulomb模型进行有限元模拟,对比真实测量所得的残余应力进行分析,为降低铸造残余应力提供数据参考及工艺研究方法.endprint
1 实验方法
1.1 铸造实验
为研究不同覆砂厚度对筒形铸件残余应力的影响,设计了高为230 mm,最大外径Φ150 mm的筒型铸件,如图1所示.在其金属芯表面覆上厚度不同的水玻璃覆膜砂,同时为了保证浇注铸件质量相同,金属铁芯直径也相应减少,即覆砂层外径保持一致.覆膜砂配方是擦洗砂∶水玻璃∶有机酯(质量比)为100∶4∶0.4.原砂为40~70目细沙,含水量0.2%.ZL205A铝合金为实验室自行熔炼,浇注温度为700 ℃.覆砂厚度的设计参考了文献[5],具体方案如表1所示.
1.2 有限元模拟过程
材料的热物理性能及模型是有限元模拟的基础.因此对ZL205A的主要热物理参数进行了测试与计算,并对模拟所用模型进行设置.
ZL205A的热膨胀系数采用德国耐驰DIL402在Ar气保护下测量,导热率在JMatPro中计算,所得结果见表2.在材料的力学性能中,将ZL205A铝